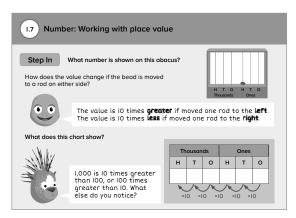

STEPPING STONES 2.0

Core Focus


- · Number: Reading and writing six-digit numbers and working with place value
- Multiplication: Extending the twos, fours, eights, and tens facts and exploring patterns

Number

- Number sense strategies from previous grades now extend to six-digit numbers.
 Students learn to read, write, draw, compare, and order these numbers using familiar and new models.
- Six-digit numbers are read in groups of three digits (starting from the left).
 Use of the **numeral expander** in all these lessons help students make sense of reading and ordering these numbers. The **abacus** also helps students visualize place value.

In this lesson, students use a numeral expander to read and write six-digit numbers. An abacus is used to represent these numbers.

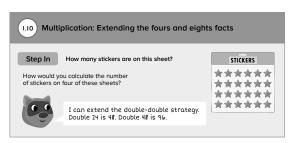
In this lesson, students consider the role of place value to write six-digit numbers. They use an abacus model and place-value chart to assist in creating new numbers.

Ideas for Home

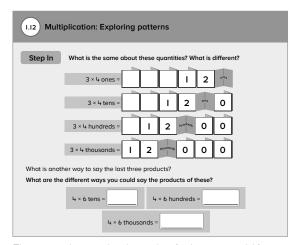
- Find six-digit numbers like city populations, or make up your own, and ask your child to read them out loud.
- Compare six-digit numbers and ask your child to explain why one number is greater or less than another.

Glossary

 Numeral expanders show how the position of each digit in a number represents a designated place value.


► An **abacus** is a calculation tool that excels at demonstrating place value. For example, this model shows how 3 ten-thousands is the same as 3 × 10,000, and so on.

STEPPING STONES 2.0


Multiplication

Students extend multiplication strategies that were explained in earlier grade levels
to multiply one- and two-digit numbers, including the double-double strategy and the
double-double-double strategy.

In this lesson, students extend strategies to multiply one- and two-digit numbers.

• Students explore patterns involving place value in multiplication. The numeral expander provides a place-value model that discourages inaccurate explanations like *I* add zeros when *I* multiply by multiples of *IO*.

The numeral expander shows that 3 \times 4 tens equal 12 tens, which is the same as 120, etc. Accurate place-value language supports deep understanding of multiplying and dividing by magnitudes of ten.

Ideas for Home

 Practice the doubles strategy with household items. Three pairs of shoes is double double the total number of shoes, or double double 6 would describe the total number of eggs in two full cartons.

Glossary

► The doubles strategy is a method of mental multiplication. If a number is multiplied by a power of two, the calculation can be performed by repeatedly doubling the numbers. For example, 4 × 8 = 32 is the same as 4 × 2 × 2 × 2, or double double double 4.